B

uilding your own low-tech wood-fired pizza oven is a substantial undertaking. But the whole process can be reduced to a series of small steps. And you don’t have to build the whole thing in a weekend. It is built from the ground up, starting with the base, the cooking surface and then the dome. The oven can be built on any flat site, or even on a terraced bank of earth behind a retaining wall, as long as it is well compacted and drained properly.

The oven is built with a raised, solid paver floor supported at a comfortable working height. The massive floor provides a ‘heatbank’ in which the heat of the oven can be stored. While the supporting base could be built of various materials, bricks or mosaic blocks are ideal. As this low-tech oven is principally unfired, it is not weather-resistant and will need to be sheltered from the rain. This can take the form of a plastic or vinyl cover (the chimney can be withdrawn), similar to a barbecue cover, or a small skillion roof can be built over the oven.

GATHER YOUR SUPPLIES
- 1.0 cubic metres of ready-mixed concrete or cement mix
- Old floorboards or framing timber for formwork
- 350 x 1200mm piece of 65mm thick galvanised steel
- 4 lengths of 50 x 32 x 3mm or 50 x 50 x 5mm 600mm long angle iron
- 3-4 bags of mortar mix
- Brick (100 x 140 x 20mm thick)
- 3mm thick compressed fibreglass sheet
- Stainless steel flue liner
- 12mm thick compressed fibreglass sheet
- 100 x 200mm x 200mm x 40mm thick glass blocks
- 3-4 bags of mortar mix
- Half wheelbarrow of gravel
- 1-2 bags cement
- Half wheelbarrow of gravel
- 100 x 200mm x 200mm x 40mm thick glass blocks
- Water resistant membrane
- Old floorboards or framing timber for formwork
- 0.2 cubic metres of ready-mix concrete or concrete mix
- 1.0 cubic metres of ready-mixed concrete or cement mix
- 3-4 bags of mortar mix
- Half wheelbarrow of gravel
- 100 x 200mm x 200mm x 40mm thick glass blocks
- Water resistant membrane

YOU’LL ALSO NEED
- Wheelbarrow; jigsaw; angle grinder with metal cutting disc; spade or hoe; bricklayer’s trowel and float; rubber mallet; screwdriver; safety goggles, ear muffs and dust mask; bread扪dont:sh

HERE’S HOW

STEP 1 (see Diagram A and B)
Pour a 200 x 1000 x 750-1000mm double layers of deep appliance

STEP 2
Build a 100 x 1000 x 750-1000mm double layers of deep appliance

STEP 3
Support the thick oven floor (see Diagram C)

STEP 4
Lay a bed of deconstructed granite (granitic gravel with some clay content) to the level of the top of the blocks. Pack this down well so it is hard. Avoid using sand as it tends to shift and not pack down well. The function of this thick bed is to absorb the heat while the oven is heating up but it also retains and returns heat to the oven once the fire is out. It is especially good when baking bread or cooking roasts.

STEP 5
Once the decomposed granite has been packed tightly into the well, spread and level a 10-15mm-thick layer of bricks or pavers of oven floor. This is easy to do by placing a 10-15mm tumbled each side of the well and use this as a screeding tool. The sand can extend a little over the block work. Then straighten the edges.

STEP 6
Mark in a front edge line, parallel to the front and set back enough to accommodate the tiles or other surrounding surface, to create a handy workbench in front of the oven opening. Also mark in a centre line from front to back.

STEP 7
Starting at the front set-out line, place the pavers upside down so that the square sharp edges face up and there are no bevelled edges which would create grooves in the oven floor. There is no need for mortar between the pavers or bricks. Only cover the floor areas of the oven with the pavers. An oval shape is much better for heat distribution than a circular one.

STEP 8
Form a skirt of pavers-on-edge as the inner circumference of the oven without giving them down at this stage. These pavers are strong enough to withstand the heat and tear of the oven and may also protect the lower section from burning timber burning into the oven wall. At this stage, the oven floor is not in place. Start at the outside of the skirt to allow for the bulk fit and insulation, while still leaving space for the door. And don’t forget to have a gap of 30mm at the front of the oven to allow for the door mould.

STEP 9
Once you are happy with the layout, use a pencil to trace the position of the setting pavers on the oven floor (see Diagram A). Then put a coat of an-setting high-temperature mortar or fireproof cement to the base and edge of the pavers and mix in place. Trowel each pawer in place with a rubber mallet.

STEP 10
Wipe the bead of excess mortar with your finger to create a neat setting around the base of the skirf. Clean off any excess with a damp sponge. Fill any gaps between the floor and skirt with the same material, then sponge back to make clean surface. Allow to dry.

STEP 11
To make the door mould (see Diagram D), use 32mm plywood of 65mm thick in a space of 104mm high. To make removal easier, the mould is not a perfect rectangle, rather a 24mm thick sides extended downward for the total height of 300mm. This shape does not have to be perfect and you can even draw the shape freestanding. If you want to. The smaller inner piece is 30mm smaller all around. Now cut the shapes out with a jigsaw and glue them together.

STEP 12
Sit door mould on top of 2mm-high angle iron at the front of the floor and support the flue with blocks or bricks. If you ultimately want to use a lean-to steel door for the oven, use the angle iron to hold the moulding back slightly. For a vertical door with a flat base, set the mould vertically. The mould can be used to create a breeze under it. To save on moulding sand, you can use polythene boxes as fillers. These will be broken up and removed through the door opening when the dome is finally completed. As an extra precaution to prevent the roof collapsing when the sand is removed, pop a 375-427mm post (height not critical) with an old plate on top in the centre of the dome.

STEP 13
Gently shovelp bricks/sand over the central post and form bases. Form into a low-pitched dome using a trowel or float, so it just covers the central post.

STEP 14
Shape the dome so the sand just meets the inner edge of the door mould and the paver skirt all round. Trowel the sand to a smooth finish. Smooth excess sand off the top of the perimeter pavers.
Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.

Choosing and testing your clay

You will need to test clay from natural sources to make sure the final mix will be plastic enough. This means it can be easily moulded and will hold shape. Natural clay is common in many areas. To test its suitability, when a kiln door is slammed shut, a small piece of clay should be attached to it.